26 research outputs found

    Learning spatial and spectral features via 2D-1D generative adversarial network for hyperspectral image super-resolution

    Get PDF
    Three-dimensional (3D) convolutional networks have been proven to be able to explore spatial context and spectral information simultaneously for super-resolution (SR). However, such kind of network can’t be practically designed very ‘deep’ due to the long training time and GPU memory limitations involved in 3D convolution. Instead, in this paper, spatial context and spectral information in hyperspectral images (HSIs) are explored using Two-dimensional (2D) and Onedimenional (1D) convolution, separately. Therefore, a novel 2D-1D generative adversarial network architecture (2D-1DHSRGAN) is proposed for SR of HSIs. Specifically, the generator network consists of a spatial network and a spectral network, in which spatial network is trained with the least absolute deviations loss function to explore spatial context by 2D convolution and spectral network is trained with the spectral angle mapper (SAM) loss function to extract spectral information by 1D convolution. Experimental results over two real HSIs demonstrate that the proposed 2D-1D-HSRGAN clearly outperforms several state-of-the-art algorithms

    CBA: Contextual Background Attack against Optical Aerial Detection in the Physical World

    Full text link
    Patch-based physical attacks have increasingly aroused concerns. However, most existing methods focus on obscuring targets captured on the ground, and some of these methods are simply extended to deceive aerial detectors. They smear the targeted objects in the physical world with the elaborated adversarial patches, which can only slightly sway the aerial detectors' prediction and with weak attack transferability. To address the above issues, we propose to perform Contextual Background Attack (CBA), a novel physical attack framework against aerial detection, which can achieve strong attack efficacy and transferability in the physical world even without smudging the interested objects at all. Specifically, the targets of interest, i.e. the aircraft in aerial images, are adopted to mask adversarial patches. The pixels outside the mask area are optimized to make the generated adversarial patches closely cover the critical contextual background area for detection, which contributes to gifting adversarial patches with more robust and transferable attack potency in the real world. To further strengthen the attack performance, the adversarial patches are forced to be outside targets during training, by which the detected objects of interest, both on and outside patches, benefit the accumulation of attack efficacy. Consequently, the sophisticatedly designed patches are gifted with solid fooling efficacy against objects both on and outside the adversarial patches simultaneously. Extensive proportionally scaled experiments are performed in physical scenarios, demonstrating the superiority and potential of the proposed framework for physical attacks. We expect that the proposed physical attack method will serve as a benchmark for assessing the adversarial robustness of diverse aerial detectors and defense methods

    Multi-level Adversarial Spatio-temporal Learning for Footstep Pressure based FoG Detection

    Full text link
    Freezing of gait (FoG) is one of the most common symptoms of Parkinson's disease, which is a neurodegenerative disorder of the central nervous system impacting millions of people around the world. To address the pressing need to improve the quality of treatment for FoG, devising a computer-aided detection and quantification tool for FoG has been increasingly important. As a non-invasive technique for collecting motion patterns, the footstep pressure sequences obtained from pressure sensitive gait mats provide a great opportunity for evaluating FoG in the clinic and potentially in the home environment. In this study, FoG detection is formulated as a sequential modelling task and a novel deep learning architecture, namely Adversarial Spatio-temporal Network (ASTN), is proposed to learn FoG patterns across multiple levels. A novel adversarial training scheme is introduced with a multi-level subject discriminator to obtain subject-independent FoG representations, which helps to reduce the over-fitting risk due to the high inter-subject variance. As a result, robust FoG detection can be achieved for unseen subjects. The proposed scheme also sheds light on improving subject-level clinical studies from other scenarios as it can be integrated with many existing deep architectures. To the best of our knowledge, this is one of the first studies of footstep pressure-based FoG detection and the approach of utilizing ASTN is the first deep neural network architecture in pursuit of subject-independent representations. Experimental results on 393 trials collected from 21 subjects demonstrate encouraging performance of the proposed ASTN for FoG detection with an AUC 0.85

    A Spectral–Spatial Transformer Fusion Method for Hyperspectral Video Tracking

    No full text
    Hyperspectral videos (HSVs) can record more adequate detail clues than other videos, which is especially beneficial in cases of abundant spectral information. Although traditional methods based on correlation filters (CFs) employed to explore spectral information locally achieve promising results, their performances are limited by ignoring global information. In this paper, a joint spectral–spatial information method, named spectral–spatial transformer-based feature fusion tracker (SSTFT), is proposed for hyperspectral video tracking, which is capable of utilizing spectral–spatial features and considering global interactions. Specifically, the feature extraction module employs two parallel branches to extract multiple-level coarse-grained and fine-grained spectral–spatial features, which are fused with adaptive weights. The extracted features are further fused with the context fusion module based on a transformer with the hyperspectral self-attention (HSA) and hyperspectral cross-attention (HCA), which are designed to capture the self-context feature interaction and the cross-context feature interaction, respectively. Furthermore, an adaptive dynamic template updating strategy is used to update the template bounding box based on the prediction score. The extensive experimental results on benchmark hyperspectral video tracking datasets demonstrated that the proposed SSTFT outperforms the state-of-the-art methods in both precision and speed

    BiTSRS: A Bi-Decoder Transformer Segmentor for High-Spatial-Resolution Remote Sensing Images

    No full text
    Semantic segmentation of high-spatial-resolution (HSR) remote sensing (RS) images has been extensively studied, and most of the existing methods are based on convolutional neural network (CNN) models. However, the CNN is regarded to have less power in global representation modeling. In the past few years, methods using transformer have attracted increasing attention and generate improved results in semantic segmentation of natural images, owing to their powerful ability in global information acquisition. Nevertheless, these transformer-based methods exhibit limited performance in semantic segmentation of RS images, probably because of the lack of comprehensive understanding in the feature decoding process. In this paper, a novel transformer-based model named the bi-decoder transformer segmentor for remote sensing (BiTSRS) is proposed, aiming at alleviating the problem of flexible feature decoding, through a bi-decoder design for semantic segmentation of RS images. In the proposed BiTSRS, the Swin transformer is adopted as encoder to take both global and local representations into consideration, and a unique design module (ITM) is designed to deal with the limitation of input size for Swin transformer. Furthermore, BiTSRS adopts a bi-decoder structure consisting of a Dilated-Uper decoder and a fully deformable convolutional network (FDCN) module embedded with focal loss, with which it is capable of decoding a wide range of features and local detail deformations. Both ablation experiments and comparison experiments were conducted on three representative RS images datasets. The ablation analysis demonstrates the contributions of specifically designed modules in the proposed BiTSRS to performance improvement. The comparison experimental results illustrate that the proposed BiTSRS clearly outperforms some state-of-the-art semantic segmentation methods

    Spatial Purity Based Endmember Extraction for Spectral Mixture Analysis

    No full text

    Mixture Analysis by Multichannel Hopfield Neural Network

    No full text

    Dual-Weighted Kernel Extreme Learning Machine for Hyperspectral Imagery Classification

    No full text
    Due to its excellent performance in high-dimensional space, the kernel extreme learning machine has been widely used in pattern recognition and machine learning fields. In this paper, we propose a dual-weighted kernel extreme learning machine for hyperspectral imagery classification. First, diverse spatial features are extracted by guided filtering. Then, the spatial features and spectral features are composited by a weighted kernel summation form. Finally, the weighted extreme learning machine is employed for the hyperspectral imagery classification task. This dual-weighted framework guarantees that the subtle spatial features are extracted, while the importance of minority samples is emphasized. Experiments carried on three public data sets demonstrate that the proposed dual-weighted kernel extreme learning machine (DW-KELM) performs better than other kernel methods, in terms of accuracy of classification, and can achieve satisfactory results
    corecore